# Model 315M

## **Metal Capacitive Differential Pressure Transducers**



### **Description**

The model 315M is a capacitive differential pressure transducer with all welded stainless steel construction. BCM 115C differential pressure sensor is integrated inside the 315M. Thanks to the unique structure of metal capacitive working principle, the 315M transducer can measure low differential pressure down to 0~16mbar and sustain high static pressure up to 320bar.

Different types of fill fluid are available for this model for different applications. The fill fluid can be the standard type-a fluid for common industry of general purpose, the type-b fluid suitable for oxygen industry, or the type-c fluid suitable for tobacco industry.

With the large diameter diaphragms, the 315M can measure pressure of either viscous paste or fluids containing solid particles. Moreover, Tantalum, Hastelloy-C, or Monel diaphragms are available on request for more corrosive media applications in case 316L stainless steel is no longer applicable.

For temperature measurement, a temperature sensor (e.g., a thermal diode or a thermal resister) can be integrated into the 315M on request.



#### **Features**

- pressure ranges: from 0~16 mbar to 0~410 bar
- static pressure: up to 320 bar for diff. pressure applications
- overload pressure: up to 520 bar for gauge pressure applications
- accuracy up to 0.25%fs
- temperature measurement available on request
- all welded stainless steel construction
- variant materials of pressure diaphragm for different corrosive media

### **Applications**

- process control systems
- hydraulic systems
- liquid level control
- biomedical instruments
- flow measurement
- **OEM** equipment

#### **Dimensions**

### 1) 315M of Capacitive Output Signal



| Pressure Range | W           |
|----------------|-------------|
| (bar)          | (mm)        |
| 0~0.016,, ~2   | 35.6        |
| 0~10           | 37          |
| 0~25           | 37.4        |
| 0~100          | 39          |
| 0~200          | 40.1, 39(#) |
| 0~410          | 39          |
|                |             |

(#): Applicable for 520bar static pressure.



Note: All dimensions are in mm.

## **BCM SENSOR TECHNOLOGIES BV**

Tel.: +32-3-238 6469

Fax: +32-3-238 4171 email: sales@bcmsensor.com

website: www.bcmsensor.com



### 2) 315M of Conditioned Output Signal (i.e., 4~20mA, 1~5V, or 4~20mA with HART protocol)



| Pressure Range | W           |
|----------------|-------------|
| (bar)          | (mm)        |
| 0~0.016,, ~2   | 35.6        |
| 0~10           | 37          |
| 0~25           | 37.4        |
| 0~100          | 39          |
| 0~200          | 40.1, 39(#) |
| 0~410          | 39          |

(#): Applicable for 520bar static pressure.

#### Notes:

1. All dimensions are in mm.

2. The Type-II is not recommended in case of conditioned output, because the electronics boards of sensor signal conditioner cannot be installed inside the transducer housing.

#### 3) Assembly of 315M with Flange





## **BCM SENSOR TECHNOLOGIES BV**

Tel.: +32-3-238 6469

Fax: +32-3-238 4171



#### **Technical Data**

### 1) 315M of Capacitive Output Signal

| Par                              | Units              |                                                                                 |                                                            | Specifi           | cation                        | s       |          |                        | Notes |       |
|----------------------------------|--------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|-------------------------------|---------|----------|------------------------|-------|-------|
| pressure medi                    |                    | gas, dilute liquid, paste, viscous fluid or fluid with grains, as long as it is |                                                            |                   |                               |         |          |                        |       |       |
| procedio modi                    | a                  |                                                                                 | compatib                                                   | le with th        | ne materials of 315M wett     | ed par  | ts       |                        |       |       |
| differential pre                 | ssure (D) ranges   | bar, D                                                                          | 0~0.016                                                    | ~0.06             | ~0.4, ~2, ~10                 | ~25     | ~100     |                        |       |       |
| static pressure                  | )                  | bar                                                                             | 20                                                         | 40                | 100 (STD), 250, 320           | 125     | 200      |                        |       | 1     |
| differential over                | erload pressure    | bar                                                                             | 20                                                         | 40                | 100 (STD), 250, 320           | 125     | 200      |                        |       | 1     |
| gauge pressure (G) ranges bar, C |                    | bar, G                                                                          | 0~0.016                                                    | ~0.06             | ~0.4, ~2, ~10                 | ~25     | ~100     | ~200                   | ~410  |       |
| absolute pressure (A) ranges     |                    | bar, A                                                                          | -                                                          | -                 | 0~2, ~10                      | ~25     | ~100     | ~200                   | -     |       |
| overload for G                   | & A pressures      | bar                                                                             | 20                                                         | 40                | 100 (STD), 250, 320           | 125     | 200      | 250 (STD), 520         | 520   | 1     |
| output signal                    | СН                 | pF                                                                              | ≤ 100, 1                                                   | 20 in cas         | se of 0.016barD/G             |         |          |                        |       | 2 & 3 |
| output signal                    | CL                 | pF                                                                              | ≥ 200                                                      |                   |                               |         |          |                        |       | 2 & 3 |
| zero offset                      | CH & CL            | pF                                                                              | 140±30;                                                    | 110±30 i          | n case of 2barD/G/A; 120      | ±30 in  | case of  | 200barG/A;             |       |       |
| Zeio oliset                      | CITACL             | Pi                                                                              | 140±40 ii                                                  | n case c          | of 520bar static pressure     |         |          |                        |       |       |
| accuracy                         |                    | %fs                                                                             | ±0.8                                                       |                   |                               |         |          |                        |       | 4 & 5 |
| long-terms sta                   | bility             | %fs/year                                                                        | ≤ ±0.25                                                    | $0.5 \le \pm 0.5$ | in case of 0.016barD/G,       | or 20   | ObarG/A  | 1                      |       |       |
| zero variation<br>by static pres | %fso               | ≤ ±0.5                                                                          |                                                            |                   |                               |         |          |                        | 6 & 7 |       |
| span variation by static pres    | %fso               | ≤ ±0.5                                                                          |                                                            |                   |                               |         |          | 6 & 7                  |       |       |
|                                  |                    |                                                                                 | -40 ~ +13                                                  | 30 (stand         | dard), filled with type-a flu | id for  | commor   | industry.              |       |       |
| operating temp                   | perature range     | °C                                                                              | -40 ~ +130, filled with type-b fluid for oxygen industry.  |                   |                               |         |          |                        |       |       |
|                                  |                    |                                                                                 | -40 ~ +130, filled with type-c fluid for tobacco industry. |                   |                               |         |          |                        |       |       |
| storage tempe                    | rature range       | °C                                                                              | -40 ~ +12                                                  | 20                |                               |         |          |                        |       |       |
| temperature c                    | oefficient of zero | f zero %fso/°C ≤ ±0.04                                                          |                                                            |                   |                               |         |          |                        | 7     |       |
| temperature c                    | oefficient of span | %fso/°C                                                                         | ≤ ±0.08                                                    |                   |                               |         |          |                        |       | 7     |
| temperature s                    | ensor              |                                                                                 | thermal diode (standard), Pt100                            |                   |                               |         |          |                        |       |       |
| insulation resi                  | stance             | ΜΩ                                                                              | ≥ 500 @                                                    | 100Vdc            |                               |         |          |                        |       |       |
| response time                    |                    | ms                                                                              | ≤ 100 in                                                   | case of           | ranges > 0.06bar; ≤ 40        | 0 in ca | se of 0  | ~0.06bar range         |       |       |
|                                  |                    |                                                                                 | flying wire                                                | es of FE          | P (one kind of Teflon) insu   | ulation | length   | = 100mm                |       |       |
| electrical inter                 | face               |                                                                                 | the flying                                                 | wires as          | s mentioned above with J      | SP HX   | P conne  | ector, wire length = ' | 100mm | 8     |
|                                  |                    |                                                                                 | 5-pin con                                                  | nector w          | vith M12x1 male thread        |         |          |                        |       |       |
| diaphragm ma                     | terial             |                                                                                 | 316L SS                                                    | (standar          | d); option: Hastelloy-C, o    | r Tanta | lum      |                        |       |       |
| housing mater                    | ial                |                                                                                 | 304 SS                                                     |                   |                               |         |          |                        |       |       |
| flange materia                   | (option)           |                                                                                 | 304 SS (                                                   | standard          | l); option: 316 SS, Hastell   | oy-C,   | or Tanta | lum                    |       |       |

General conditions for measurements: media temperature = 25°C, ambient temperature = 25°C, humidity = 60%RH.

Notes: 1. "STD" refers to standard.

- 2. CH is the capacitance measured between the red and white wires, while CL is the capacitance measured between the blue and white wires.
- 3. The listed capacitances are typical values. For batch production, CH has deviation of ≤ ±30pF while CL has deviation of ≤ ±40pF.
- 4. "fs" refers to full scale pressure.
- 5. Accuracy = sqrt (non-linearity² + hysteresis² + repeatability²).

  The non-linearity, hysteresis, and repeatability are calculated by K values which are defined as K = (CL CH) / (CL + CH).
- 6. The variations of zero and span can be eliminated when the 115C DPS is associated with an electronics circuit which is adjusted to the given static pressure.
- 7. Calculated by K values which are defined in Note 5 above.
- 8. JSP HXP-5 connector has 5 terminals for the differential capacitive + temperature output, while JSP HXP-3 connector has 3 terminals for the differential capacitive output.

## **BCM SENSOR TECHNOLOGIES BV**

Tel.: +32-3-238 6469

Fax: +32-3-238 4171



#### 2) 315M of Conditioned Output Signal (i.e., 4~20mA, 1~5V, or 4~20mA with HART protocol)

| Parameters                               | Units    |             |                                                                                                                                    | Specifi                    | cation  | s        |                        |       | Notes |  |  |
|------------------------------------------|----------|-------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|----------|------------------------|-------|-------|--|--|
| pressure medium                          |          | 0 ,         | gas, dilute liquid, paste, viscous fluid or fluid with grains, as long as it is compatible with the materials of 315M wetted parts |                            |         |          |                        |       |       |  |  |
| differential pressure (D) ranges         | bar, D   | 0~0.016     | ~0.06                                                                                                                              | ~0.4, ~2, ~10              | ~25     | ~100     |                        |       | 1     |  |  |
| static pressure                          | bar      | 20          | 40                                                                                                                                 | 100 (STD), 250, 320        | 125     | 200      |                        |       | 2     |  |  |
| differential overload pressure           | bar      | 20          | 40                                                                                                                                 | 100 (STD), 250, 320        | 125     | 200      |                        |       | 2     |  |  |
| gauge pressure (G) ranges                | bar, G   | 0~0.016     | ~0.06                                                                                                                              | ~0.4, ~2, ~10              | ~25     | ~100     | ~200                   | ~410  | 1     |  |  |
| absolute pressure (A) ranges             | bar, A   | -           | -                                                                                                                                  | 0~2, ~10                   | ~25     | ~100     | ~200                   | -     | 1     |  |  |
| minimum adjustable ranges                |          | 0~0.002     | ~0.016                                                                                                                             | ~0.06, ~0.4, ~1.8          | ~8      | ~20      | ~80                    | ~180  | 3     |  |  |
| overload for G & A pressures             | bar      | 20          | 40                                                                                                                                 | 100 (STD), 250, 320        | 125     | 200      | 250 (STD), 520         | 520   | 2     |  |  |
| output signal                            |          | 4~20mA (    | standard                                                                                                                           | l), 1~5V, 4~20mA with HAI  | RT prof | tocol    | , ,                    |       |       |  |  |
| accuracy                                 | %fs      | ±0.25, ±0   | ).5 (stand                                                                                                                         | dard)                      |         |          |                        |       | 4 & 5 |  |  |
| long-terms stability                     | %fs/year | ≤ ±0.25     | ; ≤ ±0.5                                                                                                                           | in case of 0.016barD/G,    | or 200  | ObarG/A  |                        |       |       |  |  |
| supply voltage (Vs)                      | Vs       | 12,, 30     | 0                                                                                                                                  |                            |         |          |                        |       |       |  |  |
| load resistance                          | Ω        | ≤ (Vs - 1   | 12V) / 0.0                                                                                                                         | )2A                        |         |          |                        |       |       |  |  |
| zero variation caused by static pressure | %fso     | ≤ ±0.5      |                                                                                                                                    |                            |         |          |                        |       | 6     |  |  |
| span variation caused by static pressure | %fso     | ≤ ±0.5      | ≤ ±0.5                                                                                                                             |                            |         |          |                        |       |       |  |  |
| operating temperature range              | °C       | -40 ~ +85   | 5                                                                                                                                  |                            |         |          |                        |       |       |  |  |
| storage temperature range                | °C       | -40 ~ +8    | 5                                                                                                                                  |                            |         |          |                        |       |       |  |  |
| temperature coefficient of zero          | %fso/°C  | ≤ ±0.01,    | , ≤ ±0.0                                                                                                                           | 25 in case of 0.016barD/   | G       |          |                        |       |       |  |  |
| temperature coefficient of span          | %fso/°C  | ≤ ±0.01     | , ≤ ±0.0                                                                                                                           | 25 in case of 0.016barD/   | G       |          |                        |       |       |  |  |
| insulation resistance                    | ΜΩ       | ≥ 500 @     | 100Vdc                                                                                                                             |                            |         |          |                        |       |       |  |  |
| response time                            | ms       | ≤ 100 in    | case of                                                                                                                            | ranges > 0.06bar; ≤ 40     | 0 in ca | se of 0  | ~0.06bar range         |       |       |  |  |
| electrical interface                     |          | flying wire | es of PV                                                                                                                           | C insulation, length = 100 | mm      |          |                        |       |       |  |  |
| GIGOLITORI IIILETTACE                    |          | the flying  | wires as                                                                                                                           | mentioned above with J     | SP HX   | P conne  | ector, wire length = 1 | 100mm | 7     |  |  |
| diaphragm material                       |          | 316L SS     | (standar                                                                                                                           | d); option: Hastelloy-C, o | r Tanta | lum      |                        |       |       |  |  |
| housing material                         |          | 304 SS      |                                                                                                                                    |                            |         |          |                        |       |       |  |  |
| flange material (option)                 |          | 304 SS (    | standard                                                                                                                           | ); option: 316 SS, Hastel  | oy-C,   | or Tanta | lum                    |       |       |  |  |

General conditions for measurements: media temperature = 25°C, ambient temperature = 25°C, humidity = 60%RH.

Notes: 1. The listed D/G/A ranges refer to the designed ranges.

- 2. "STD" refers to standard.
- 3. The minimum adjustable range refer to the minimum range which can be calibrated by the sensor signal conditioner to the conditioned output from the corresponding designed range under condition of meeting the specifications listed in the table above.

  E.g., the designed range of 0~2barD can be calibrated to measure minimum 0~0.4barD which has 4mA output signal related to 0barD while 20mA output signal related to 0.4barD.
- 4. "fs" refers to full scale pressure.
- 5. Accuracy = sqrt (non-linearity<sup>2</sup> + hysteresis<sup>2</sup> + repeatability<sup>2</sup>).
- 6. The variations of zero and span can be eliminated when the transducer is associated with an electronics circuit which is adjusted to the given static pressure.
- 7. JSP HXP-2 connector has 2 terminals for the current loop, while JSP HXP-3 connector has 3 terminals for the voltage output.

## **BCM SENSOR TECHNOLOGIES BV**

Tel.: +32-3-238 6469

Fax: +32-3-238 4171

website: www.bcmsensor.com

email: sales@bcmsensor.com



## **Ordering Information**

1) 315M of Capacitive Output Signal (standard)

|                                                                                                                                                                                               | transduce                                                                                                                                                                                                                                                                                                                                    | r types & pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e references                                                                                                                                                                                                                                                                                       | 7          |   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|--|--|
| 315M(I-DP), 315                                                                                                                                                                               | M(II-DP): 315M type-                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    | <u>↓</u> 」 |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nigh static pressure of 250bar or 320bar                                                                                                                                                                                                                                                           | 1          |   |  |  |
| , ,                                                                                                                                                                                           | M(II-AP): 315M type-                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                           | 1          |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elative) pressure applications                                                                                                                                                                                                                                                                     | 1          |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    | _          |   |  |  |
|                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c (overload) pressure                                                                                                                                                                                                                                                                              | 1   1      |   |  |  |
| 0.016 = 0~16mb                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              | vs 20ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
| 0.06 = 0~60mb                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              | vs 40ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    | -          |   |  |  |
| 0.4 = 0~400m                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | par (standard), 250bar, or 320bar                                                                                                                                                                                                                                                                  | -          |   |  |  |
| 2 = 0~2bar[                                                                                                                                                                                   | * **                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | par (standard), 250bar, or 320bar                                                                                                                                                                                                                                                                  |            |   |  |  |
| 10 = 0~10bar<br>25 = 0~25bar                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              | vs 100i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | par (standard), 250bar, or 320bar                                                                                                                                                                                                                                                                  | -          |   |  |  |
| 100 = 0~100ba                                                                                                                                                                                 | ( ), ,                                                                                                                                                                                                                                                                                                                                       | vs 1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    | -          |   |  |  |
| 200 = 0~200ba                                                                                                                                                                                 | . ,                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | par (standard), or 520bar                                                                                                                                                                                                                                                                          | 1          |   |  |  |
| 410 = 0~410ba                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                     | vs 520t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    | 1          |   |  |  |
|                                                                                                                                                                                               | can work with both D                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    | 1          |   |  |  |
| . ,                                                                                                                                                                                           | neasuring range of bo                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                  |            |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | tic (overload) pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ssure                                                                                                                                                                                                                                                                                              |            |   |  |  |
|                                                                                                                                                                                               | ase of 16mbarD/G                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
|                                                                                                                                                                                               | ase of 60mbarD/G                                                                                                                                                                                                                                                                                                                             | 01 - 0/0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - DIO/A                                                                                                                                                                                                                                                                                            |            |   |  |  |
|                                                                                                                                                                                               | case of 400mbarD/G                                                                                                                                                                                                                                                                                                                           | , 2barD/G/A, or 10b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arD/G/A                                                                                                                                                                                                                                                                                            |            |   |  |  |
|                                                                                                                                                                                               | case of 25barD/G/A<br>case of 100barD/G/A                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
|                                                                                                                                                                                               | case of 100barD/G/A                                                                                                                                                                                                                                                                                                                          | 2harD/C/A 10harl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D/G/A or 200barG/A                                                                                                                                                                                                                                                                                 | -          |   |  |  |
|                                                                                                                                                                                               | case of 400mbarD/G                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    | +          |   |  |  |
|                                                                                                                                                                                               | case of 200barG/A, o                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aibiGiA                                                                                                                                                                                                                                                                                            | -          |   |  |  |
| 0200011111                                                                                                                                                                                    | 0000 01 2000001 0/7 1, 0                                                                                                                                                                                                                                                                                                                     | 1 1100010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    | _          |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | output signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
|                                                                                                                                                                                               | apacitive + temperatu                                                                                                                                                                                                                                                                                                                        | re signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    |            | _ |  |  |
| 3 = differential ca                                                                                                                                                                           | apacitive signal                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    | ٦          |   |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
| ∩ 8%fc                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
| 0.8%fs                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    | _          |   |  |  |
| 0.8%fs                                                                                                                                                                                        | oper                                                                                                                                                                                                                                                                                                                                         | ating temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | range                                                                                                                                                                                                                                                                                              | ]          |   |  |  |
|                                                                                                                                                                                               | oper<br>°C (standard, fill fluid                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    | <u>.</u>   |   |  |  |
| Ta = -40 ~ +130                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | type-a for common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
| Ta = -40 ~ +130<br>Tb = -40 ~ +130                                                                                                                                                            | °C (standard, fill fluid                                                                                                                                                                                                                                                                                                                     | type-a for common oxygen industry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                    |            |   |  |  |
| Ta = -40 ~ +130<br>Tb = -40 ~ +130                                                                                                                                                            | °C (standard, fill fluid<br>°C (fill fluid type-b for<br>°C (fill fluid type-c for                                                                                                                                                                                                                                                           | type-a for common oxygen industry) tobacco industry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | industry)                                                                                                                                                                                                                                                                                          |            |   |  |  |
| $Ta = -40 \sim +130$ $Tb = -40 \sim +130$ $Tc = -40 \sim +130$                                                                                                                                | °C (standard, fill fluid<br>°C (fill fluid type-b for<br>°C (fill fluid type-c for                                                                                                                                                                                                                                                           | type-a for common<br>oxygen industry)<br>tobacco industry)<br>temperature sens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | industry)                                                                                                                                                                                                                                                                                          |            |   |  |  |
| $Ta = -40 \sim +130$ $Tb = -40 \sim +130$ $Tc = -40 \sim +130$ ThermalDiode                                                                                                                   | °C (standard, fill fluid<br>°C (fill fluid type-b for<br>°C (fill fluid type-c for<br>(standard)                                                                                                                                                                                                                                             | type-a for common oxygen industry) tobacco industry) temperature sens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | industry)                                                                                                                                                                                                                                                                                          |            |   |  |  |
| $Ta = -40 \sim +130$ $Tb = -40 \sim +130$ $Tc = -40 \sim +130$                                                                                                                                | °C (standard, fill fluid<br>°C (fill fluid type-b for<br>°C (fill fluid type-c for<br>(standard)                                                                                                                                                                                                                                             | type-a for common oxygen industry) tobacco industry) temperature sens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | industry)                                                                                                                                                                                                                                                                                          |            |   |  |  |
| Ta = -40 $\sim$ +130<br>Tb = -40 $\sim$ +130<br>Tc = -40 $\sim$ +130<br>ThermalDiode                                                                                                          | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor                                                                                                                                                                                                                                       | type-a for common oxygen industry) tobacco industry) temperature sens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or temperature sensor available on request                                                                                                                                                                                                                                                         |            |   |  |  |
| $Ta = -40 \sim +130$ $Tb = -40 \sim +130$ $Tc = -40 \sim +130$ ThermalDiode                                                                                                                   | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) reature sensor                                                                                                                                                                                                                                       | type-a for common oxygen industry) tobacco industry) temperature sense Pt100 Other i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or temperature sensor available on request                                                                                                                                                                                                                                                         |            |   |  |  |
| Ta = -40 $\sim$ +130<br>Tb = -40 $\sim$ +130<br>Tc = -40 $\sim$ +130<br>ThermalDiode<br>NS = no tempe                                                                                         | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) reature sensor                                                                                                                                                                                                                                       | type-a for common oxygen industry) tobacco industry) temperature sense Pt100 Other to mechanical interfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or temperature sensor available on request                                                                                                                                                                                                                                                         |            |   |  |  |
| Ta = -40 $\sim$ +130<br>Tb = -40 $\sim$ +130<br>Tc = -40 $\sim$ +130<br>ThermalDiode<br>NS = no tempe                                                                                         | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor                                                                                                                                                                                                                                       | type-a for common oxygen industry) tobacco industry)  temperature sens.  Pt100 Other temperature interface F = flathree-way manifold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or temperature sensor available on request                                                                                                                                                                                                                                                         |            |   |  |  |
| $Ta = -40 \sim +130$ $Tb = -40 \sim +130$ $Tc = -40 \sim +130$ ThermalDiode $NS = no \text{ tempe}$ $NoF = no \text{ flang}$ $F3M = flange \text{ w}$                                         | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and to                                                                                                                                                                                              | type-a for common oxygen industry) tobacco industry)  temperature sens.  Pt100 Other temperature for the first process of the first pro | or temperature sensor available on request ce nge with exhaust valve                                                                                                                                                                                                                               |            |   |  |  |
| $Ta = -40 \sim +130$ $Tb = -40 \sim +130$ $Tc = -40 \sim +130$ ThermalDiode $NS = no \text{ tempe}$ $NoF = no \text{ flang}$ $F3M = flange \text{ w}$ $code$                                  | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and ti diaphragm                                                                                                                                                                                    | type-a for common oxygen industry) tobacco industry) temperature sens Pt100 Other temperature free-way manifold materials housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | industry)  or  temperature sensor available on request  ce  nge with exhaust valve  flange & exhaust valve & manifold                                                                                                                                                                              |            |   |  |  |
| $Ta = -40 \sim +130$ $Tb = -40 \sim +130$ $Tc = -40 \sim +130$ $ThermalDiode$ $NS = no tempe$ $NoF = no flang$ $F3M = flange v$ $code$ $21 (standard)$                                        | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and ti  diaphragm 316L SS                                                                                                                                                                           | type-a for common coxygen industry) tobacco industry) temperature sens. Pt100 Other temperature free-way manifold materials housing 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | industry)  or  temperature sensor available on request  ce  nge with exhaust valve  flange & exhaust valve & manifold  304 SS                                                                                                                                                                      |            |   |  |  |
| Ta = -40 $\sim$ +130<br>Tb = -40 $\sim$ +130<br>Tc = -40 $\sim$ +130<br>ThermalDiode<br>NS = no tempe<br>NoF = no flang<br>F3M = flange v                                                     | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and ti  diaphragm 316L SS 316L SS                                                                                                                                                                   | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other f  mechanical interfa F = fla hree-way manifold  materials housing 304 SS 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | industry)  or  temperature sensor available on request  ce  nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS                                                                                                                                                              |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode NS = no tempe  NoF = no flang F3M = flange v  code 21 (standard) 22 23                                                          | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and ti  diaphragm 316L SS 316L SS Hastelloy-C                                                                                                                                                       | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other f  mechanical interfat F = flathree-way manifold  materials housing 304 SS 304 SS 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | industry)  or  temperature sensor available on request  ce  nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS                                                                                                                                                      |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode NS = no tempe  NoF = no flang F3M = flange v  code 21 (standard) 22 23 24                                                       | °C (standard, fill fluid vpe-b for °C (fill fluid type-c for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and to diaphragm 316L SS 316L SS Hastelloy-C Hastelloy-C                                                                                                                                  | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other to mechanical interfa F = fla hree-way manifold  materials housing 304 SS 304 SS 304 SS 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | industry)  or  temperature sensor available on request  ce  nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS  Hastelloy-C                                                                                                                                         |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode   NS = no tempe  NoF = no flang F3M = flange w  code 21 (standard) 22 23 24 25                                                  | °C (standard, fill fluid  °C (fill fluid type-b for  °C (fill fluid type-c for  °C (fill fluid type-c for  (standard)  erature sensor   le (standard)  with exhaust valve and to   diaphragm  316L SS  316L SS  Hastelloy-C  Hastelloy-C  Tantalum                                                                                           | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other f  mechanical interfa F = fla hree-way manifold  materials housing 304 SS 304 SS 304 SS 304 SS 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | industry)  or  temperature sensor available on request  ce  nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS  Hastelloy-C  316 SS                                                                                                                                 |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode NS = no tempe  NoF = no flang F3M = flange v  code 21 (standard) 22 23 24                                                       | °C (standard, fill fluid vpe-b for °C (fill fluid type-c for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and to diaphragm 316L SS 316L SS Hastelloy-C Hastelloy-C                                                                                                                                  | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other to mechanical interfa F = fla hree-way manifold  materials housing 304 SS 304 SS 304 SS 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | industry)  or  temperature sensor available on request  ce  nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS  Hastelloy-C                                                                                                                                         |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode   NS = no tempe  NoF = no flang F3M = flange w  code 21 (standard) 22 23 24 25                                                  | °C (standard, fill fluid  °C (fill fluid type-b for  °C (fill fluid type-c for  °C (fill fluid type-c for  (standard)  erature sensor   le (standard)  with exhaust valve and to   diaphragm  316L SS  316L SS  Hastelloy-C  Hastelloy-C  Tantalum                                                                                           | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other f  mechanical interfa F = fla hree-way manifold  materials housing 304 SS 304 SS 304 SS 304 SS 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | industry)  ce temperature sensor available on request ce nge with exhaust valve  flange & exhaust valve & manifold 304 SS 316 SS 316 SS Hastelloy-C 316 SS Tantalum                                                                                                                                |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130 ThermalDiode NS = no tempe  NoF = no flang F3M = flange v  code 21 (standard) 22 23 24 25 26 FW (standard) =                                  | °C (standard, fill fluid °C (fill fluid type-b for °C (fill fluid type-c for (standard) erature sensor  le (standard) with exhaust valve and ti  diaphragm 316L SS 316L SS Hastelloy-C Hastelloy-C Tantalum Tantalum flying wires, length =                                                                                                  | type-a for common coxygen industry) tobacco industry) temperature sens.  Pt100 Other temperature interface F = flate fla | industry)  temperature sensor available on request  ce nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS  Hastelloy-C  316 SS  Tantalum  ee th can be customized, e.g, FW(50mm).                                                                                   |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode NS = no tempe  NoF = no flang F3M = flange v  code 21 (standard) 22 23 24 25 26  FW (standard) = JSTconnector =                 | °C (standard, fill fluid vpe-b for °C (fill fluid type-c for °C (fill fluid type-c for °C (fill fluid type-c for standard)  erature sensor  e (standard)  with exhaust valve and ti diaphragm 316L SS 316L SS Hastelloy-C Hastelloy-C Tantalum Tantalum  flying wires, length = flying wires with JST.                                       | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other f  mechanical interfact housing 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | industry)  or  temperature sensor available on request  ce nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS  Hastelloy-C  316 SS  Tantalum  ee th can be customized, e.g, FW(50mm). Innector (according to the output signal)                                     |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode NS = no tempe  NoF = no flang F3M = flange v  code 21 (standard) 22 23 24 25 26  FW (standard) = JSTconnector =                 | °C (standard, fill fluid  °C (fill fluid type-b for  °C (fill fluid type-c for  °C (fill fluid type-c for  °C (standard)   return sensor   le (standard)  with exhaust valve and ti   diaphragm  316L SS  316L SS  Hastelloy-C  Hastelloy-C  Tantalum  Tantalum  Tantalum  flying wires, length = flying wires with JST  wire length = 100mm | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other f  rechanical interfat F = flathree-way manifold  materials housing 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | industry)  or  temperature sensor available on request  ce nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS  Hastelloy-C  316 SS  Tantalum  e th can be customized, e.g, FW(50mm).  mector (according to the output signal) e customized, e.g, JSTconnector(50mm) |            |   |  |  |
| Ta = -40 ~ +130 Tb = -40 ~ +130 Tc = -40 ~ +130 Tc = -40 ~ +130  ThermalDiode NS = no tempe  NoF = no flang F3M = flange v  code 21 (standard) 22 23 24 25 26  FW (standard) = JSTconnector = | °C (standard, fill fluid  °C (fill fluid type-b for  °C (fill fluid type-c for  °C (fill fluid type-c for  °C (standard)   return sensor   le (standard)  with exhaust valve and ti   diaphragm  316L SS  316L SS  Hastelloy-C  Hastelloy-C  Tantalum  Tantalum  Tantalum  flying wires, length = flying wires with JST  wire length = 100mm | type-a for common coxygen industry) tobacco industry) temperature sense Pt100 Other f  rechanical interfat F = flathree-way manifold  materials housing 304 SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | industry)  or  temperature sensor available on request  ce nge with exhaust valve  flange & exhaust valve & manifold  304 SS  316 SS  316 SS  Hastelloy-C  316 SS  Tantalum  ee th can be customized, e.g, FW(50mm). Innector (according to the output signal)                                     |            |   |  |  |

#### Examples of Ordering Code

- standard transducer:
  - 315M(I-DP)-10-100-5-0.8%fs-TA-ThermalDiode-NoF-21-FW
- customized transducer:

315M(I-DP)-10-100-5-0.8%fs-TA-Pt1000-F-21-JSTconnector-(\*)

(\*): Customized temperature sensor = Pt1000.

## **BCM SENSOR TECHNOLOGIES** BV

Tel.: +32-3-238 6469

Fax: +32-3-238 4171



example: 315M(I-DP)-0/2-100-4/20mA-0.5%fs-TA-NoF-21-FW-(\*)

2) 315M of Conditioned Output Signal (i.e., 4~20mA, 1~5V, or 4~20mA with HART protocol)

|                                    | transducer types & pr                 | ressure reference   | s                                                                                                 |   |   |   |  |
|------------------------------------|---------------------------------------|---------------------|---------------------------------------------------------------------------------------------------|---|---|---|--|
| 315M(II-DP): 315M type-II for D    |                                       |                     |                                                                                                   | _ |   |   |  |
| 315M(II-hDP): 315M type-II for I   | DP of high static pressure of         | 250bar or 320bar    |                                                                                                   |   |   |   |  |
| 315M(II-AP): 315M type-II for at   | osolute pressure applications         | i                   |                                                                                                   |   |   |   |  |
| B15M(II-GP): 315M type-II for g    | auge (relative) pressure appl         | ications            |                                                                                                   |   |   |   |  |
| designed pressure ranges &         | ref. examples of selec                | cted ranges(#)      | static (overload) pressure                                                                        |   |   |   |  |
| )~16mbarD(^), or G                 | 0/0.016, -0.016/+0.01                 | 16, -0.002/+0.002   | 20bar                                                                                             |   |   |   |  |
| 0~60mbarD(^), or G                 | 0/0.06, -0.06/+0.06, -                | 0.016/+0.016        | 40bar                                                                                             |   |   |   |  |
| )~400mbarD(^), or G                | 0/0.4, -0.4/+0.4, -0.00               | 6/+0.06             | 100bar (standard), 250bar, or 320bar                                                              |   |   |   |  |
| )~2barD(^), G, or A                | 0/2, -2/+2, -0.4/+0.4                 |                     | 100bar (standard), 250bar, or 320bar                                                              |   |   |   |  |
| ~10barD(^), G, or A                | 0/10, -10/+10, -1.8/+                 | 1.8                 | 100bar (standard), 250bar, or 320bar                                                              |   |   |   |  |
| )~25barD(^), G, or A               | 0/25, -25/+25, -8/+8                  |                     | 125bar                                                                                            |   |   |   |  |
| ~100barD(^), G, or A               | 0/100, -100/+100, -20                 | 0/+20               | 200bar                                                                                            |   |   |   |  |
| ~200barG, or A                     | 0/200, -1/+200, -1/+8                 | 80                  | 250bar (standard), or 520bar                                                                      |   |   |   |  |
| ~410barG                           | 0/410, -1/+410, -1/+1                 | 80                  | 520bar                                                                                            |   |   |   |  |
| ): DP sensors can work with be     | oth DP≤0 and DP≥0, e.g.,              | 0~2barD = measur    | ring range of both -2~0bar and 0~+2bar.                                                           |   |   |   |  |
| Technical Data. The product        | s will be calibrated according        | to the selected ran | adjustable range as specified in<br>nge before delivery.<br>D while 20mA output signal at +2barD. |   |   |   |  |
|                                    | static (overloa                       | d) pressure         |                                                                                                   |   |   |   |  |
| 20 = 20bar in case of 16mbarE      | · · · · · · · · · · · · · · · · · · · | a, pressure         |                                                                                                   |   |   |   |  |
| 40 = 40bar in case of 60mbar[      |                                       |                     |                                                                                                   |   |   |   |  |
| 100 = 100bar in case of 400mb      |                                       | )/G/A               |                                                                                                   |   |   |   |  |
| 125 = 125bar in case of 25barD     |                                       | ,, 0,,, 1           |                                                                                                   |   |   |   |  |
| 200 = 200bar in case of 100bar     |                                       |                     |                                                                                                   |   |   |   |  |
| 250 = 250bar in case of 400mb      |                                       | /A. or 200barG/A    |                                                                                                   |   |   |   |  |
| 320 = 320bar in case of 400mb      |                                       |                     |                                                                                                   |   |   |   |  |
| 520 = 520bar in case of 200bar     |                                       |                     |                                                                                                   |   |   |   |  |
|                                    |                                       |                     |                                                                                                   |   |   |   |  |
| 4/00 4 /-1 1 1)                    | output s                              |                     |                                                                                                   |   |   |   |  |
| 4/20mA (standard)                  |                                       | 1/5V                |                                                                                                   |   | _ |   |  |
| 4/20mAwithHART                     |                                       | r another output is | required, consult BCM.                                                                            |   |   |   |  |
|                                    | accura                                | асу                 |                                                                                                   |   |   |   |  |
| 0.25%fs                            |                                       | -                   |                                                                                                   |   |   |   |  |
| 0.5%fs (standard)                  |                                       |                     |                                                                                                   |   |   |   |  |
|                                    | au a                                  |                     |                                                                                                   |   |   |   |  |
| T. CH C '11                        | fill flu                              | ıid                 |                                                                                                   |   |   |   |  |
| Ta = fill fluid type-a for common  |                                       |                     |                                                                                                   |   |   | , |  |
| Tb = fill fluid type-b for oxygen  | -                                     |                     |                                                                                                   |   |   |   |  |
| Tc = fill fluid type-c for tobacco | industry                              |                     |                                                                                                   |   |   |   |  |
|                                    | mechanical                            | interface           |                                                                                                   |   |   |   |  |
| NoF = no flange (standard)         |                                       | F = flange with ex  | haust valve                                                                                       |   |   |   |  |
| F3M = flange with exhaust valve    | and three-way manifold                |                     |                                                                                                   |   |   |   |  |
|                                    |                                       | -1-                 |                                                                                                   |   |   |   |  |
| code di                            | materi                                |                     | Jange & exhaust valve & manifold                                                                  |   |   |   |  |
|                                    | aphragm housi                         |                     | lange & exhaust valve & manifold                                                                  |   |   |   |  |
| 21 (standard) 316L<br>22 316L      |                                       | 304 9               |                                                                                                   |   |   |   |  |
|                                    | 85 304 SS<br>elloy-C 304 SS           | 316 9               |                                                                                                   |   |   |   |  |
|                                    | elloy-C 304 SS                        | 316 S               | elloy-C                                                                                           |   |   |   |  |
|                                    |                                       |                     | -                                                                                                 |   |   |   |  |
| 25 Tanta<br>26 Tanta               |                                       | 316 S               |                                                                                                   |   |   |   |  |
| Tanta                              | 10111                                 | Tallic              | AIGHT                                                                                             |   |   |   |  |
|                                    | electrical in                         | nterface            |                                                                                                   |   |   |   |  |
| FW (standard) = flying wires, le   | ngth = 100mm. Wire length of          | an be customized,   | e.g, FW(50mm).                                                                                    |   |   |   |  |
| JSTconnector = the flying wires    |                                       | ,                   |                                                                                                   |   |   |   |  |
|                                    | 00mm. Wire length can be cu           | ustomized, e.g, JS7 | Connector(50mm).                                                                                  |   |   |   |  |
| Other electrical interface availab | ole on request.                       |                     |                                                                                                   |   |   |   |  |
|                                    |                                       |                     |                                                                                                   |   |   |   |  |
| (*)" is necessary only if any cust |                                       |                     |                                                                                                   |   |   |   |  |

#### **Examples of Ordering Code**

- standard transducer:
  - 315M(II-DP)-(-1/+2)-100-4/20mA-0.5%fs-TA-NoF-21-FW
- customized transducer:

315M(II-DP)-(0/2)-250-1/5V-0.25% fs-TA-F-21-TE104257/2(150mm)-(\*) \$\$(\*): Customized electrical interface = TE 104257/2 connector with 150mm flying wires.

The listed dimensions, specifications, and ordering information are subject to change without prior notice.

## **BCM SENSOR TECHNOLOGIES BV**

